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Cyclic stereotriads and stereotetradsof theβ-hydroxy-δ-lactone type, e.g. prelactonesBandE, common in
polyketides and polypropionates, are prepared via SO2-induced oxyallylations of enoxysilanes with
(1E,3Z)-1-(1-phenylethoxy)penta-1,3-dien-3-yl carboxylates. Using (Z)- or (E)-enoxysilanes both
4,5-cis- or 4,5-trans-δ-lactones are obtained. Depending on the reduction method applied to
the obtained aldol intermediates 5,6-trans or 5,6-cis-derivatives are formed. The δ-lactones can be
prepared in both their enantiomeric forms depending on the (1R)- or (1S)-configuration of the
starting 1-(1-phenylethoxy)penta-1,3-dienes.

Introduction

Polyketides and polypropionates represent an important
class of natural compounds1 with broad potential for phar-
macological applications.2 Their stereochemical complexity
has stimulated intensive research toward the development of
chemical3,4 and biochemical methods5 for their total synthe-
sis. β-Hydroxy-δ-lactones like compounds 1-7 (Chart 1)
constitute, as cyclic stereotriads and stereotetrads, a common

structural motif in a large number of natural polyketides and
polypropionates and are intermediates in the step-by-step
biosynthesis of these compounds.6 As such, they have been
isolated from different polyketide-producing organisms.

†Dedicated to Professor Janine Cossy, ESPCI, Paris, on the occasion of being
awarded the Grand Prix Achille LeBel.
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For instance, β-hydroxy-δ-lactone prelactone B (1) has
been found in the fermentation broth of Streptomyces pro-
ducing concanamycins and bafilomycins (Chart 1),7 which
stimulated several syntheses of (þ)-(1) and its stereoisomers
using various approaches.8 Prelactone E ((-)-2), a product
of chemical degradation of concanolide derivatives,9 has
been synthesized recently by two groups applying Evans’
aldol chemistry.10,11 Using an L-proline-catalyzed aldol reaction
Barbas and co-workers obtained lactone (þ)-3 in a two-step
process with 11% ee, that could be improved by carrying out
the reaction inan ionic liquid.12,13Lactone (-)-4, the5-epimerof
(þ)-3, has been prepared by Cordova and co-workers from
propanal in a three-step process with an ee >99% involving
two successive L-proline- and D-proline-catalyzed aldol reac-
tions followed by MnO2-oxidation.

14 Compound (-)-5 was
obtained by Hoffmann and co-workers via enantioselective
crotylboration of methacroleine followed by diastereoselective
hydroboration.17b Chênevert and co-workers made (-)-5 in
afewstepswith58%overallyieldviaenzymaticdesymmetrization

ofmeso-(anti,anti)-2,4-dimethyl-1,3,5-pentanetriol.15,16δ-Lactone
(þ)-6, the 5-epimer of (-)-5, has been obtained only through
biological synthesis applying polyketide synthase.6a Both
lactones, (-)-5 and (þ)-6, contain an R,β,γ-anti,anti-stereotriad
subunit, the most elusive to obtain.17

In this report we propose alternative syntheses of lactones
(þ)-1-(þ)-6. Our method is general and has been applied
also to the synthesis of lactone (-)-7, a yet unknown
compound.18

With the use of our SO2-reaction cascade that combines
electron-rich dienes 8 and (Z)- or (E)-enoxysilanes 10 via
SO2-Umpolung, we have developed a one-pot synthesis of
R,β,γ-syn,anti- and -anti,anti-stereotriads of types 12 and 13,
respectively (Scheme 1).19,20 The starting dienes 8 are readily
obtained from pentan-3-one, ethyl formate and inexpensive,
enantiomerically enriched (S)- or (R)-1-phenylethanol, the
source of chirality.21

A hetero-Diels-Alder addition between diene 8 and SO2

followed by Lewis acid-assisted ionization gives a zwitterionic

CHART 1. Different δ-Lactones 1-7, Synthesized Using SO2-Chemistry

SCHEME 1. One-Pot Synthesis of R,β,γ-syn,anti- or anti,anti-Stereotriads through SO2-Induced Oxyallylation of (Z)-or (E)-Enoxysilanesa

aThe shown structures are obtained for R* = (S)-1-phenethyl.

(7) Bindseil, K. U.; Zeeck, A. Helv. Chim. Acta 1993, 76, 150–157.
(8) (a) Hanefeld, U.; Hooper, A. M.; Staunton, J. Synthesis 1999, 401–

403. (b) Fournier, L.; Gaudel-Siri, A.; Kocienski, P. J.; Pons, J.-M. Synlett
2003, 107–111. (c) Chakraborty, T. K.; Tapadar, S. Tetrahedron Lett. 2003,
44, 2541–2543. (d) Pihko, P. M.; Erkkil€a, A. Tetrahedron Lett. 2003, 44,
7607–7609. (e) Csaky, A. G.; Mba, M.; Plumet, J. Synlett 2003, 2092–2094.
(f) Enders, D.; Haas, M. Synlett 2003, 2182–2184. (g) Dias, L. C.; Steil, L. J.;
Vasconcelos, F. de A. Tetrahedron: Asymmetry 2004, 15, 147–150.
(h) Yadav, J. S.; Reddy, K. B.; Sabitha, G. Tetrahedron Lett. 2004, 45, 6475–
6476. (i) Aggarwal, V. K.; Bae, I.; Lee, H.-Y. Tetrahedron 2004, 60, 9725–9733.
(j) Yadav, J. S.; Reddy, M. S.; Prasad, A. R. Tetrahedron Lett. 2005, 46, 2133–
2136. (k) Salaskar, A. A.; Mayekar, N. V.; Sharma, A.; Nayak, S. K.;
Chattopadhyaya, A.; Chattopadhyay Synthesis 2005, 2777–2781. (l) Sellars,
J. D.; Steel, P. G. Org. Bioorg. Chem. 2006, 4, 3223–3224. (m) Srihari, P.;
Ravindar, K.; Somaiah, R.; Yadav, J. S. Synth. Commun. 2008, 38, 1389–1397.
(n) Sellars, J. D.; Steel, P. D. Tetrahedron 2009, 65, 5588–5595.

(9) Boddien, C.; Gerber-Nolte, J.; Zeeck, A. Liebigs Ann. 1996, 1381–
1384.

(10) Hinterding, K.; Singhanat, S.; Oberer, L.Tetrahedron Lett. 2001, 42,
8463–8465.

(11) Sabitha, G.; Padmaja, P.; Reddy, K. B.; Yadav, J. S. Tetrahedron
Lett. 2008, 49, 919–922.

(12) Chowdari, N. S.; Ramachary,D. B.; Cordova, A.; Barbas, C. F., III.
Tetrahedron Lett. 2002, 43, 9591–9595.

(13) Cordova, A. Tetrahedron Lett. 2004, 45, 3949–3952.
(14) Casas, J.; Enguist, M.; Ibrahem, I.; Kaynak, B.; Cordova, A.Angew.

Chem., Int. Ed. 2005, 44, 1343–1345.
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SCHEME 2. Syntheses of Prelactones B ((þ)-1) and E ((-)-2)

SCHEME 3. Syntheses of δ-Lactones (þ)-3, (-)-4, (-)-5, and (þ)-6
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species 9, which undergoes an oxyallylation reaction with
alkenes 10 to silylsulfinates 11. The latter are converted
in situ into stereotriads 12 and 13, respectively, in the pres-
ence of catalytic Pd(OAc)2/PPh3, involving a highly stereo-
selective chirality transfer from the ε-center in 11 to theγ-center
in 12 respective 13 (Scheme 1).22,23

Results and Discussion

Our syntheses of the natural prelactones B ((þ)-1) and E
((-)-2) combine diene 1424 with (Z)-enoxysilanes 15a and
15b, respectively. The SO2-induced oxyallylation and con-
comitant desulfinylative desilylation afforded 3:1-mixtures
of R,β-syn- and R,β-anti-stereodiad 16a/17a (72% yield) and
16b/17b (55%yield), respectively (Scheme 2). Thesemixtures
were treated with TiCl4 in CH2Cl2

25 to cleave the phenethyl
ether moieties and provided 3:1 mixtures of the correspond-
ing alcohols 18a/19a (84%) and 18b/19b (95%). Reduction
of these mixtures with Me4NBH(OAc)3/AcOH26 gave 3:1
mixtures of stereotriads 20a/21a (94%) and 20b/21b (60%).
Ozonolysis of the latter, treatment with Me2S, and chroma-
tographic purification furnished (þ)-1 (83% based on 20a)
and (-)-2 (91% based on 20b).

This synthesis of (þ)-1 gives the final product in four steps
and 35% yield based on diene (S)-14 or in eight steps and
13% yield based on propionyl chloride, the starting material
of diene (S)-14.24 Prelactone E ((-)-2) was obtained in four
steps and 21% overall yield based on diene (S)-14.

The β-hydroxy-δ-lactones (þ)-3, (-)-4, (-)-5, and (þ)-6
(Scheme 3) were obtained by applying our oxyallylation cascade
to diene (þ)-22,21,27 and using (Z)-15b and (E)-enoxysilane
23. This generated the stereotriads (þ)-2427 and (þ)-2520 with

diastereoselectivities of 6:1 and 3:1, respectively.28 Treat-
ment of 24with TiCl4 in CH2Cl2 at-78 �Cafforded titanium
alkoxide 26 which was reacted directly with BH3 3Me2S

29 to
give stereotetrad (þ)-27 in 90% yield. Ozonolysis of the enol
ester of (þ)-27 followed by workup with Me2S provided
lactone (þ) 3 (78%). Aqueous workup of 26 furnished
alcohol (-)-28. Its reduction with Me4NBH(OAc)3

26 gave
(þ)-29 (67%), the ozonolysis of which provided lactone
(-)-4 (78%). The same reaction sequence applied to (þ)-25
furnished stereotetrads (þ)-32 (72%) and (-)-33 (67%),
which were ozonolyzed to produce lactones (-)-5 (62%)
and (þ)-6 (73%), respectively. Structures of lactones (þ)-3,
(-)-4, (-)-5, and (þ)-6 were proven by their spectral data.
Their relative configuration was established by the vicinal
3JH,H coupling constants in the 1H NMR sprectra. Structures
of (-)-5 and (þ)-6were also confirmed by single-crystal X-ray
diffraction studies.30 The diversity of our methodology is
demonstrated by the synthesis of four different stereotetrads,
i. e. structures (þ)-27, (þ)-29, (þ)-32, and (-)-33 (Scheme 3),
all using the same diene (R)-22 as starting material.

Lactone (þ)-3 was synthesized in three steps and 48%
overall yield from diene (þ)-22, and (-)-4 was obtained in
four synthetic steps and 29% overall yield based on (þ)-22.
Diastereoisomers (-)-5 and (þ)-6 were synthesized in four
and three steps with 14% and 26% overall yields, respectively,
starting from diene (þ)-22.

Lactone (-)-7 was derived in a similar way from diene
(-)-3427 and (E)-enoxysilane35 (Scheme4).Their SO2-mediated
condensation produced stereotriad (-)-3620 (67%, dr>10:1).
Reduction of ketone (-)-36 with Me2AlCl/Bu3SnH

31 in
CH2Cl2 (workup with KF) gave stereotetrad (-)-3720 in
90% yield (dr > 10:1). FeCl3-induced SN1-debenzylation of
(-)-37 provided diol (þ)-38 (93%, dr > 10:1). Its relative
configuration was confirmed by the 1H- and 13C NMR

SCHEME 4. Synthesis of δ-Lactone (-)-7
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spectra of the corresponding acetonide (þ)-39 obtained by
treatment of (þ)-38 with (MeO)2CMe2 and catalytic TsOH 3
H2O (96%). It was furthermore verified by single-crystal
X-ray diffraction studies of crystalline ketone (-)-40 ob-
tained by treatment of (þ)-39withMeLi 3LiBr inDME/Et2O
(86%).30 Ozonolysis of enol ester (þ)-38 and subsequent
treatment with Me2S provided crystalline lactone (-)-7, the
structure of which was also proven by single-crystal X-ray
diffraction studies.30

Conclusion

Fully substituted 4-hydroxy-δ-lactones containing up to
four continuous stereocenters can be prepared applying the
oxyallylation of enoxysilanes through SO2-Umpolung of
enantiomerically enriched (1E,3Z)-1-(1-phenylethoxy)penta-
1,3-dien-3-yl carboxylates. These stereotriads and stereotetrads
are common motifs in a large number of natural polyketides
and polypropionates. The number of synthetic steps, yields,
and availability of starting materials are comparable with
other well-accepted methods. The present methodology offers
an alternative approach and extends the toolbox of chemists
chasing cyclic polypropionate structures.Wewere able to obtain
lactone (þ)-6 for the first time using chemical synthesis6a

as well as the yet unknown (-)-(3R,4R,5S,6R)-4-hydroxy-
6-isopropyl-3,5-dimethyltetrahydro-2H-pyran-2-one ((-)-7).

Experimental Section

(þ)-(3R,4R,5S,6R)-6-Ethyl-4-hydroxy-3,5-dimethyltetrahydro-
2H-pyran-2-one ((þ)-6). O3 was bubbled into a soln of (-)-33
(12 mg, 0.037 mmol) in CH2Cl2 (2 mL) at-78 �C until persistence
of the blue color. After the disappearance of (-)-33 by TLC,
Me2S (0.1 mL) was added and the mixture stirred at-78 �C for
20min. The mixture was allowed to warm to 25 �C. Solvent eva-
poration and flash chromatography on silica gel (PE/EtOAc)
gave (þ)-6 (5 mg, 73%) as colorless crystals (X-ray, Supporting
Information).Rf=0.23 (PE/EtOAc, 3:2).Mp 79-81 �C.R25

D=
þ21 (CHCl3, c=0.16). IR (film): ν (cm-1)=3433, 2971, 2938,
2882, 1707 (s), 1461, 1380, 1212, 1172, 1119, 992, 974. 1H NMR
(CDCl3, 400MHz): (ppm)=1.02 (t, 3H, 3J=7.5 Hz), 1.07 (d, 3H,
3J=6.5 Hz), 1.33 (d, 3H, 3J=7.0 Hz), 1.55 (ddq, 1H, 3J=7.0,
7.5Hz), 1.82 (ddq, 1H, 3J=3.0, 7.0, 7.5Hz), 1.87-1.93 (m, 1H),
2.53 (dq, 1H, 3J=3.0, 7.0 Hz), 3.84 (br s, 1H), 4.36 (ddd, 1H,
3J=3.0, 7.0, 10.5 Hz). 13CNMR (CDCl3, 100.6MHz): δ (ppm)=
8.7, 12.9, 14.3, 26.1, 37.7, 42.6, 73.3, 82.1, 173.8. ESI-HRMS: m/z
calcd for C9H17O3

þ 173.1178, found 173.1175 [M þ Hþ].
(-)-(3S,4S,5R,6S)-4-Hydroxy-6-isopropyl-3,5-dimethyltetra-

hydro-2H-pyran-2-one ((-)-7). O3 was bubbled through a soln
of (-)-38 (200mg, 0.62 mmol) in CH2Cl2 (5 mL) at-78 �C until
persistence of the blue color, then O2 was bubbled. After the
disappearance of (-)-38 by TLC, Me2S (0.25 mL) was added
and the mixture was allowed to warm to 25 �C overnight. Water
(10 mL) was added and the aq phase was extracted with CH2Cl2
(3� 10 mL). The combined organic extracts were washed with
brine (2�10mL) and dried (Na2SO4), and the solvent was evap-
orated. Flash chromatography on silica gel (CH2Cl2/EtOAc)
gave pure (-)-7 (110 mg, 87%), that was recrystallized from
hexane (X-ray, Supporting Information).Rf=0.45 (PE/EtOAc,
7:3). Mp 92-95 �C. R25

D=-28 (CHCl3, c=0.40). IR (film):
ν (cm-1)=3370, 3260, 2970, 2920, 1725, 1695, 1465, 1370, 1345,
1220, 1195, 1170, 1120, 990. 1HNMR (CDCl3, 400MHz): (ppm)
=0.89 (d, 3H, 3J=7.1Hz), 1.06, 1.11 (2d, 6H, 3J=7.0Hz), 1.32
(d, 3H, 3J=7.1Hz), 1.87 (sept, 1H, 3J=7.0Hz), 1.95 (dq, 1H, 3J=
6.6, 10.7 Hz), 2.51 (q, 1H, 3J=7.1 Hz), 3.85 (s, 1H), 4.29 (d, 1H,
3J=10.7 Hz). 13C NMR (CDCl3, 100.6 MHz): δ (ppm)=12.7,

14.0, 10.0, 28.9, 36.0, 42.3, 73.2, 84.8, 173.9. ESI-HRMS: m/z
calcd for C10H19O3

þ 187.1334, found 187.1336 [M þ Hþ].
(2Z,4R,5R,6R,7R)-5,7-Dihydroxy-4,6-dimethylnon-2-en-3-yl

2-methylpropanoate ((-)-33).Onemolar TiCl4 inCH2Cl2 (3mL,
3.0 mmol) was added quickly to a stirred soln of (þ)-(1Z,2R,
3S,4S)-1-ethylidene-2,4-dimethyl-5-oxo-3-[(1R)-1-phenylethoxy]-
heptyl-2-methylpropanoate ((þ)-25) (550mg, 1.47mmol). After
stirring at -78 �C for 1 h, 1 M BH3 3Me2S in CH2Cl2 (6.7 mL,
6.7 mmol) was added, and the mixture was stirred at-78 �C for
two more hours. The reaction mixture was quenched with a sat.
aq soln of NaHCO3 (15 mL). The mixture was extracted with
EtOAc (3�10mL). The combined organic extracts were washed
with brine (15 mL) and dried (MgSO4). Solvent evaporation
and flash chromatography on silica gel (PE/EtOAc) gave (-)-33
(269 mg, 67%) as colorless oil. Rf=0.29 (PE/EtOAc, 4:1). R25

D=
-26 (CHCl3, c=0.58). IR (film): ν (cm-1)=3438, 2970, 2935,
2876, 1746 (s), 1691, 1459, 1408, 1337, 1240, 1138, 968. 1HNMR
(CDCl3, 400 MHz): (ppm) = 0.93 (d, 3H, 3J = 7.0 Hz), 0.97
(t, 3H, 3J=7.5 Hz), 1.08 (d, 3H, 3J=6.5 Hz), 1.26 (d, 6 H, 3J=
7.0Hz), 1.34-1.49 (m, 1H), 1.46 (d, 3H, 3J=6.5Hz), 1.58-1.78
(m, 2H), 2.64-2.76 (m, 2H), 3.19 (dd, 1H, 3J=5.0Hz, 3J=7.5Hz),
3.51-3.61 (m, 1H), 5.25 (q, 1H, 3J=7.0Hz). 13CNMR (CDCl3,
100.6MHz): (ppm)=10.1, 10.9, 15.3, 16.6, 19.2, 19.3, 27.9, 34.3,
40.1, 44.4, 76.5, 78.5, 114.6, 149.0, 176.2. ESI-HRMS: calcd for
C15H29O4

þ 273.2066, found 273.2059 [M þ Hþ].
(þ)-(2Z,4S,5S,6S,7S)-5,7-Dihydroxy-4,6,8-trimethylnon-2-en-

3-yl benzoate ((þ)-38). To a soln of (2Z,4S,5S,6S,7S)-7-hydroxy-
4,6,8-trimethyl-5-[(1S)-1-phenylethoxy]non-2-en-3-yl benzoate
((-)-37) (277 mg, 0.65 mmol) in CH2Cl2 (50 mL) was added a
solution of FeCl3 (0.2 g, 1.3 mmol) in 20mL of CH2Cl2. The result-
ingmixturewas stirred vigorously for 10min at 25 �C, andH2Owas
added. The aq phase was extracted with CH2Cl2 (3� 30 mL). The
combined organic layers were washed with brine (50 mL), dried
(Na2SO4), filtered, and evaporated. Flash chromatography on silica
gel (PE/EtOAc,9:1) gave (þ)-38 (195mg,93%) as colorlessoil.Rf=
0.48 (PE/AcOEt, 8:2). R25

D=þ16 (CHCl3, c=0.22). IR (film): ν
(cm-1)=3441, 3063, 2963, 2930, 2875, 1722, 1715, 1694, 1601, 1462,
1453, 1261, 1176, 1165, 1142, 1105, 1069, 1026. 1H NMR (CDCl3,
400MHz): (ppm)=0.88, 0.88 (2d, 6H, 3J=6.8Hz), 1.00, 1.19 (2d,
6H, 3J=6.8Hz), 1.53 (d, 3H, 3J=6.8Hz), 1.79-1.90 (m, 2H), 2.91
(quint, 1H, 3J=7.4 Hz), 3.32 (dd, 1H, 3J=7.4, 4.3 Hz), 3.50 (dd,
1H, 3J=8.6, 3.1 Hz), 5.38 (q, 1H, 3J=7.4 Hz), 7.51 (t, 2H, 3J=
7.4Hz),7.64 (t, 1H,3J=7.4Hz),8.13 (d,2H,3J=8.0Hz). 13CNMR
(CDCl3, 100.6 MHz): (ppm) = 11.1, 14.7, 15.4, 16.9, 20.4, 30.2,
37.6, 44.2, 78.7, 79.7, 114.9, 128.7, 129.1, 130.2, 133.8, 149.3, 165.5.
ESI-HRMS: calcd for C19H28O4Naþ 343.1885; found 343.1895
[M þ Naþ].

(þ)-(2Z,4S)-4-[(4S,5S,6S)-2,2,5-Trimethyl-6-(propan-2-yl)-
1,3-dioxan-4-yl]pent-2-en-3-yl benzoate ((þ)-39). To a soln of diol
(þ)-38 (190 mg, 0.59 mmol) in dimethoxypropane (2 mL) was
added p-TsOH 3H2O (5.6mg, 0.03mmol). Themixturewas stirred
for 1hat 25 �C, thenneutralizedby adding solidNaHCO3, filtered,
and evaporated. Flash chromatography on silica gel (PE/EtOAc,
9:1) gave (þ)-39 (200 mg, 96%) as a colorless oil. R25

D = þ6
(CHCl3, c=0.30). IR (film): ν (cm-1)=2964, 2930, 2875, 2849,
1738, 1687, 1602, 1492, 1453, 1390, 1378, 1261, 1201, 1174, 1154,
1133, 1105, 1026. 1H NMR (CDCl3, 400 MHz): (ppm)=0.72 (d,
3H, 3J=6.5Hz), 0.88, 0.93 (2d, 6H, 3J=6.4Hz), 1.18 (s, 3H), 1.21
(d, 3H, 3J = 7.1 Hz), 1.30 (s, 3H), 1.54 (d, 3H, 3J = 6.8 Hz),
1.80-1.90 (m, 2H), 2.68 (qd, 1H, 3J=7.4, 1.8 Hz), 3.32 (dd, 1H,
3J=10.4, 1.8Hz), 3.40 (dd, 1H, 3J=9.8, 2.4Hz), 5.33 (q, 1H, 3J=
6.8Hz), 7.48 (t, 2H, 3J=7.4Hz), 7.58 (t, 1H, 3J=7.4Hz), 8.13 (d,
2H, 3J=8.0 Hz). 13C NMR (CDCl3, 100.6 MHz): (ppm)=10.8,
11.4, 14.1, 15.7, 18.8, 19.8, 27.8, 29.5, 29.7, 32.6, 39.1, 76.4, 77.0,
97.3, 112.7, 128.0, 129.7, 132.6, 148.8, 163.5. ESI-HRMS: calcd for
C22H32O4K

þ 399.1938; found 399.1937 [MþKþ]. Anal. calcd for
C22H32O4 (360.49): C, 73.30%; H, 8.95%; O, 17.75%. Found C,
73.22%; H, 8.85%; O, 17.74%.
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(-)-(4S,5S,6S,7S)-5,7-Isopropylidendioxy-4,6,8-trimethylnona-

3-one (-)-40.Asolnof (þ)-39 (1.00 g, 2.78mmol) inDME(15mL)
was added to a soln of MeLi 3LiBr (2.1 M in Et2O, 6.6 mL,
13.9mmol) in Et2O (10mL) at-78 �C. Themixture was stirred at
-78 �C for 5 h, poured into an ice-cold sat. aq soln of NH4Cl
(30 mL). The aq phase was extracted with Et2O (4�20 mL). The
organic layers were washed with brine (20 mL), dried (Na2SO4),
and evaporated. The residue was purified by recrystallization from
hexane, giving (-)-40 (615 mg, 86%) as colorless crystals. Rf =
0.52 (PE/AcOEt, 9:1). Mp=89-92 �C. R25

D=-20 (CHCl3, c=
0.15). IR (film): ν (cm-1) = 2975, 2959, 2938, 2875, 2841, 1693,
1458, 1412, 1378, 1358, 1346, 1249, 1198, 1164, 1152, 1130, 1101,
1048. 1H NMR (CDCl3, 400 MHz): (ppm)=0.75, 0.80 (2d, 6H,
3J=6.7 Hz), 0.91 (d, 3H, 3J=6.9 Hz), 1.01 (t, 3H, 3J=7.1 Hz),
1.19 (d, 3H, 3J=7.3 Hz), 1.31, 1.36 (2s, 6H), 1.44 (m, 1H), 1.85
(sept, 1H, 3J=6.6 Hz), 2.45, 2.59 (2qd, 2H, 2J=18.1 Hz, 3J=
7.2Hz), 2.71 (m, 1H), 3.27 (d, 1H, 3J=10.0Hz), 3.56 (d, 1H, 3J=
10.3 Hz). 13C NMR (CDCl3, 100.6 MHz): (ppm)=7.4, 7.6, 11.7,
13.7, 14.2, 19.1, 20.1, 27.9, 29.9, 34.1, 49.7, 76.9, 77.6, 97.8, 214.2.

ESI-HRMS: m/z calcd for C15H28O3Naþ 279.1936, found
279.1939 [M þ Naþ].
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